Para ter certeza de que uma equação é trinômio quadrado perfeito, observe se b = 2k e c = k2(não se esqueça de que “a”, “b” e “c” são coeficientes da equação do segundo grau e 2k e k2 são coeficientes do produto notável). A equação desse exemplo possui a = 1, b = 2·9 e c = 92.
Toda equação do segundo grau que for um trinômio quadrado perfeito será também resultado de um dos produtos notáveis abaixo. O lado direito desses produtos, em vermelho, é chamado justamente de trinômio quadrado perfeito. (x + k)2 = x2 + 2kx + k2 (x – k)2 = x2 – 2kx + k2
Dois termos (monômios) do trinômio devem ser quadrados. Um termo (monômio) do trinômio deve ser o dobro das raízes quadradas dos dois outros termos. Veja se o trinômio 9a 2 – 12ab + 4b 2 é um quadrado perfeito. Para isso, siga as regras que foram citadas.
Como a = 2, dividiremos toda a equação por 2. Isso fará com que a equação resultante tenha a = 1 e possibilitará o uso do método de completar quadrados. Resolver uma equação envolve boas ideias e atitude.
Observe o exemplo abaixo, em que comparamos os coeficientes “a”, “b” e “c” de uma equação do segundo grau com os valores de 2k e k 2 nos produtos notáveis anteriores. Exemplo: Calcule as raízes da equação do segundo grau x 2 + 18x + 81 = 0.
Quantos quilos de soja pode dar uma vaca?
Quais são os cereais não maltados?
Qual o salmo para acalmar o coração?
Quais são os três tipos de extrativismo praticados no Brasil?
Quanto custa uma perícia médica judicial?
Como identificar a pedra do anel?
O que é melhor Dysport ou Botox?
O que fazer quando o apartamento de cima faz muito barulho?
Qual a relação do Canadá com a Inglaterra?
O que esperar da sexta extinção em massa?
Quantos capítulos tem The Witcher 1 jogo?
O que foi a vinda da família real para o Brasil?
Qual a estrutura do óxido de grafeno?