Uma função é dita derivável (ou diferenciável) quando sua derivada existe em cada ponto do seu domínio. Segundo esta definição, a derivada de uma função de uma variável é definida como um processo de limite.
Lembre-se que uma função f é diferenciável em a se derivada f (a) existe. A existência das derivadas direcionais f (a;y), incluindo as derivadas parciais, contudo, não implicam a continuidade de um campo escalar f : S ⊆ Rn → R em a ⊆ S. xy2 x2 + y4 , x = 0, 0, caso contrário.
A reta tangente a y = f(x) em (a, f(a)) é a reta que passa em (a, f(a)), cuja inclinação é igual a f '(a), a derivada de f em a.
Regras de derivação
As seções precedentes serviram para nos fornecer o conceito de derivada de uma função. Muito embora os conceitos de velocidade instantânea e de inclinação da curva num ponto tenham sido obtidos sem qualquer preocupação com o rigor teórico, o que procuramos foi enfatizar que eles podem ser tratados indistintamente através de um método matemático.
A definição de derivada nos leva ao seguinte problema: em que condição existirá a derivada de uma função num ponto ? Do ponto de vista formal basta verificar a existência do limite que define a derivada; do ponto de vista geométrico a derivada resolve o problema da determinação da reta tangente a uma curva num ponto.
A derivada, definida como limite, terá provada sua existência num ponto se o limite existir, portanto deveremos estudar os limites laterais: Devido ao seu grande uso esses limites quando existem recebem denominações e notações especiais: o primeiro é denominado derivada à direita da função f em
Como as cobras cuidam de seus filhotes?
Onde fica o relê da ventoinha do Polo 2008?
Quais são os pontos em português?
Qual é o papel dos seres vivos no ciclo da água?
Como tratar lesão no nervo radial?
Como começar a fazer um resumo?
O que dar para acalmar o gato?
Como testar certificado digital Correios?
O que fazer com funcionário alcoólatra?
Como se livrar da insegurança e do medo?
Como testar a vibração do celular?