A função logarítmica é dada pela lei f(x) = logax, no qual "a" é a base positiva (a > 0) e sempre diferente de 1. Nesse tipo de função, o logaritmo de base "a'', ligado a determinado valor de b, tem o expoente igual a x, que é a potência da base que resulta justamente em b.
Tipos de função exponencial O gráfico da função f(x) = ax é crescente quando a base é um número maior do que 1, ou seja, quando a > 1. Nesse caso, quanto maior o valor de x maior será o valor de y. A função exponencial é decrescente quando a base é um número maior que 0 e menor que 1, ou seja, quando 0
Função Crescente ou Decrescente A função exponencial pode ser crescente ou decrescente. Será crescente quando a base for maior que 1. Por exemplo, a função y = 2x é uma função crescente. Para constatar que essa função é crescente, atribuímos valores para x no expoente da função e encontramos a sua imagem.
Função exponencial crescente: é quando a > 1, independente do valor de x. Confira no gráfico abaixo que à medida que o valor de x aumenta, f(x) ou y também aumentam. Função exponencial decrescente: é quando 0 < a < 1, de forma que teremos uma função exponencial decrescente em todo o domínio da função.
A função logarítmica é útil para situações como os juros compostos — já que ela é a função inversa da função exponencial — e a medição de magnitude de terremotos, há também sua aplicação na química e na geografia.
A base, por definição, deve ser positiva e diferente de 1. A função logarítmica é útil para situações como os juros compostos — já que ela é a função inversa da função exponencial — e a medição de magnitude de terremotos, há também sua aplicação na química e na geografia.
Com os valores encontrados na tabela, traçamos o gráfico dessa função. Note que quanto menor o valor de x, mais perto do zero a curva logarítmica fica, sem contudo, cortar o eixo y. A inversa da função logarítmica é a função exponencial. A função exponencial é definida como f (x) = a x, com a real positivo e diferente de 1.
Se a < 0, a função é decrescente. Vamos determinar se as funções a seguir são crescentes ou decrescentes. Crescente, pois a = 2 > 0. Decrescente, pois a = – 1 < 0. Decrescente, pois a = – 4 < 0. Crescente, pois a = 4 > 0. Quando uma função não é crescente nem decrescente, ou seja, quando a = 0, ela é uma função constante.
Funções crescentes Um exemplo de função crescente é a função y = 4x + 5. Para perceber isso, observe a tabela a seguir: Observe que o valor de x, a cada linha, é aumentado em uma unidade.
Então, se quisermos encontrar os intervalos em que uma função é crescente ou decrescente, nós a derivamos e encontramos os intervalos em que sua derivada é positiva ou negativa (o que é mais fácil de se fazer!). Quer aprender mais sobre intervalos crescentes/decrescentes e cálculo diferencial? Confira este vídeo. é crescente ou decrescente.
Como se vestir para um casamento ao ar livre?
O que é macroeconomia e exemplos?
Quais são os dez benefícios científicos da gratidão?
Como deve se virar na cama uma mulher grávida?
Quando o aluno está Silabico Alfabetico?
Como tratar encefalopatia de Wernicke?
Como desejar sucesso profissional?
Quando é comemorado o Dia da Vitória?
Qual o papel do pedagogo no processo de educação inclusiva?
Quanto Bill Gates já doou na vida?
Quais são os riscos da radiação ionizante?
Quais são as atitudes necessárias para que haja inclusão na escola?