Para encontrarmos numa equação de 1º grau com duas incógnitas, por exemplo, 4x + 3y = 0, os valores de x e de y é preciso relacionar essa equação com outra ou outras com as mesmas incógnitas. Essa relação é chamada de sistema.
Esse método consiste em escolher uma das duas equações, isolar uma das incógnitas e substituir na outra equação, veja como: Dado o sistema , enumeramos as equações. Agora na equação 2 substituímos o valor de x = 20 – y. x = 20 – y.
Esse método consiste basicamente em três etapas:
1º passo: seja I a primeira equação e II a segunda, vamos isolar uma das incógnitas em I e II. Escolhendo isolar a incógnita x, temos que: 2º passo: igualar as duas novas equações, já que x = x. 3º passo: substituir o valor de y por -2 em uma das equações.
A solução ou raiz de uma equação é o conjunto de todos os valores que, quando atribuídos à incógnita, tornam a igualdade verdadeira. Considere a equação com uma incógnita 5x – 9 = 16, verifique que x = 5 é solução ou raiz da equação.
O que é uma equação de primeiro grau? ... Sempre que há letras e números separados por um sinal de igual, temos uma equação. A equação 3x + 1 = 10, por exemplo, é uma equação de 1º grau, com uma incógnita apenas. De 1º grau, porque a única incógnita presente (x) tem expoente 1, sendo que x1 = x.
O método da comparação assemelha-se ao da substituição porque é necessário isolar uma das incógnitas, porém, ao contrário do outro método, na comparação isolamos a mesma incógnita nas duas equações. Em seguida, devemos igualar as equações, comparando as igualdades.
Para adicionarmos as duas equações e a soma de uma das incógnitas de zero, teremos que multiplicar a primeira equação por – 3. Portanto, a solução desse sistema é: S = (8, 12). Se resolver um sistema utilizando qualquer um dois métodos o valor da solução será sempre o mesmo.
Exemplo. Considere o sistema: O par ordenado (6; -2) satisfaz ambas equações, assim, ele é solução do sistema. O conjunto formado pelas soluções do sistema é chamado de conjunto solução. Do exemplo acima, temos: S = { ( 6; -2)}.
Associando um sistema linear a uma matriz. Um sistema linear pode estar associado a uma matriz, os seus coeficientes ocuparão as linhas e as colunas da matriz, respectivamente. Veja exemplo 1: O sistema: x + y = 3 x – y = 1. pode ser representado por duas matrizes, uma completa e outra incompleta.
Para resolver um sistema é necessário encontrar os valores que satisfaçam simultaneamente todas as equações. Um sistema é chamado do 1º grau, quando o maior expoente das incógnitas, que integram as equações, é igual a 1 e não existe multiplicação entre essas incógnitas. Como resolver um sistema de equações do 1º grau?
Como fazer flecha no Minecraft 2020?
Como se faz figurinha no WhatsApp?
Como limpar salamandra de ferro?
Como criar uma fanpage para minha empresa?
Como organizar arquivos por data Windows?
Como fazer uma pequena estufa?
Como organizar um mercado pequeno?
Como organizar os seus livros?
O que vai na ficha técnica de um filme?
Como ser uma boa mãe organizada?
Como fazer uma conta de grandeza proporcional?
Como colocar as abas em ordem Alfabetica no Excel?
Como organizar os documentos enviados para a contabilidade?
Como construir uma cozinha americana passo a passo?
Como organizar resultados de exames médicos?
Como organizar Instagram Stories?
Como organizar músicas no pendrive para tocar em som automotivo?