PG ou progressão geométrica é uma sequência numérica onde os termos a partir do segundo são obtidos multiplicados por uma constante q que chamamos de razão. Para encontrarmos a razão de uma PG basta dividirmos um número pelo seu antecessor.
A razão de uma PG pode ser encontrada a partir da divisão de um termo da sequência pelo seu antecessor. Ao fazer isso, caso ela seja realmente uma progressão geométrica, essa divisão sempre será igual a q. Logo, essa PG possui razão q = 2.
A soma dos termos de uma progressão aritmética pode ser obtida por meio da metade do número de termos multiplicada pela soma dos seus extremos. Uma progressão aritmética (PA) é uma sequência numérica em que cada termo é a soma do anterior por uma constante, chamada de razão.
Assim, para descobrir a razão dessa PG, a fórmula será desenvolvida da seguinte maneira: q= a2/a3 = 6/2 = 3. A razão (q) da PG acima é 3. Como a razão de uma PG é constante, ou seja, comum para todos os termos, podemos trabalhar a sua fórmula com termos diferentes, mas sempre dividindo-o pelo seu antecessor.
Genericamente, poderemos escrever: aj = ak .
a) Dada a PG (2,4,8,... ), pede-se calcular o décimo termo. b) Sabe-se que o quarto termo de uma PG crescente é igual a 20 e o oitavo termo é igual a 320. Qual a razão desta PG? Então q4 =16 e portanto q = 2.
21 curiosidades que você vai gostar
A soma dos termos de uma PA é dada pela multiplicação da metade do seu número de termos pela soma do primeiro com o último termo. Uma progressão aritmética (PA) é uma sequência numérica que segue a lógica a seguir: um elemento é igual ao anterior somado com uma constante real.
Sn = a1 (qn 1)
Para utilizarmos a fórmula da soma é preciso saber quem é o 1º termo, a razão e a quantidade de elementos que essa PG possui.
A porcentagem representa um valor dividido por 100. Dessa forma, falar 25% de um valor é o mesmo que dizer 25 de 100, ou seja, 25 dividido por 100. E, para descobrir o número exato de ausentes no evento, é só multiplicar o todo pela porcentagem. Dessa forma: 160 x 25% = 160 (25/100) = 160 x 0,25 = 40.
1º passo: dividir o valor por 100 e encontrar o resultado que representa 1%. 2º passo: multiplicar o valor que representa 1% pela porcentagem que se quer descobrir. Chegamos mais uma vez a conclusão que 20% de 200 é 40.
Tem mais depois da publicidade ;) Mas podemos realizar esse cálculo mais rapidamente se fizermos 50 x 101 = 5050. Portanto, através dessa ideia, Gauss conseguiu calcular rapidamente a soma de todos os números entre 1 e 100, obtendo o resultado de 5050.
A progressão aritmética – PA é uma sequência de valores que apresenta uma diferença constante entre números consecutivos. A progressão geométrica – PG apresenta números com o mesmo quociente na divisão de dois termos consecutivos.
Exemplo: (2, 5, 8, 11, 14, 17, 20, 23...) Essa é uma sequência que pode ser classificada como progressão aritmética, pois a razão r = 3 e o primeiro termo é 2.
PG: (2,4,8,16, 32, 64, 128, 256...) Vale lembrar que a razão de uma PG é sempre constante e pode ser qualquer número racional (positivos, negativos, frações) exceto o número zero (0).
Logo, o décimo termo é 2^9 = 512.
A progressão aritmética (PA) é uma sequência numérica que utilizamos para descrever o comportamento de certos fenômenos na matemática. Em uma PA, o crescimento ou decrescimento é sempre constante, isto é, de um termo para o outro, a diferença será sempre a mesma, e essa diferença é conhecida como razão.
No Ensino Médio, são estudados dois tipos de progressão: aritmética (PA) e a geométrica (PG). A ideia de progressão está relacionada com avanço e sucessão. Na Matemática, caracterizamos a progressão como uma série numérica de quantidades, ou seja, que ocorre de forma sucessiva, uma após a outra.
O resultado dessa implementação é 500500.
Para a matemática, a soma é uma operação que permite adicionar uma quantidade a outra(s) homogênea(s). Enquanto operação matemática, a soma consiste em juntar pelo menos dois números para obter uma quantidade total.
O termo geral de uma progressão aritmética (PA) é uma fórmula usada para encontrar um termo qualquer de uma PA, indicado por an, quando seu primeiro termo (a1), a razão (r) e o número de termos (n) que essa PA possui são conhecidos.
Portanto, a Progressão Aritmética 5,10,…,785 possui 157 termos.
Pode tomar creatina para pedalar?
Quais são as coisas que devo fazer para não sentir sentimentos?
Como saber se sou Isfj ou INFJ?
O que fazer para a tinta não ressecar o cabelo?
Porque sonhamos com coisas que acontecem depois?
Qual é a importância do Aquífero Alter do Chão onde ele fica como é formado?
Como saber se você é Fotogenico?
Como não salvar histórico no Google Chrome?
O que é necessário para abrir uma SCP?
Quantos dias para curar candidíase mamária?
O que precisa para montar uma loja de queijos?
Como usar o modo anônimo no iPhone?