O vetor u × v é ortogonal aos vetores u e v. Demonstraç˜ao. Para mostrar que u× v é ortogonal a u, basta mostrar que o produto escalar entre estes vetores é igual a 0.
➢ Dizemos que dois vetores são paralelos (ou colineares) quando seus representantes tiverem a mesma direção, ou seja, se tiverem representantes sobre uma mesma reta ou sobre retas paralelas. ➢ O vetor nulo �� é paralelo a todo vetor e também todo vetor é paralelo a si mesmo.
Quando normalizamos um vetor, na verdade calculamos V/|V| = (x/|V|, y/|V|, z/|V|) . Portanto, podemos chamar vetores normalizados como vetores unitários (ou seja, vetores com comprimento unitário). Qualquer vetor, quando normalizado, muda apenas sua magnitude, não sua direção.
Para determinarmos se são ortogonais basta vermos se o produto de cada vetor com os outros vetores do conjunto vale . Como temos vetores no conjunto, repare que teremos que testar combinações. O primeiro com o segundo, o primeiro com o terceiro e o segundo com o terceiro. Opa, os vetores e não são ortogonais.
Para achar um vetor paralelo a uma reta, basta pegarmos 2 pontos quaisquer da reta e encontrarmos o vetor que liga os dois pontos. E temos o ponto .
Para normalizar um vetor, portanto, tomamos um vetor de um comprimento qualquer e, mantendo-o apontado à mesma direção, mudamos seu comprimento a 1, tornando-o o que se define como vetor unitário.
O representante escolhido, quase sempre é o vetor v cuja origem é (0, 0, 0) e extremidade é o terno ordenado (a, b, c) do espaço R 3, razão pela qual denotamos este vetor por: v = (a, b, c). Se a origem do vetor não é a origem (0, 0, 0) ∈ R 3, realizamos a diferença entre a extremidade e a origem do vetor.
Ângulo entre dois vetores O produto escalar entre os vetores u e v pode ser escrito na forma: u.v = |u| |v| cos (x) onde x é o ângulo formado entre u e v.
Dados u e v E (V, <, >), a distância é || (u – v) ||. Partindo destes conceitos, já se podem definir vetores ortogonais, bases ortogonais e ortonormais. Seja (V, <, >) espaço euclidiano, u, v E V são ortogonais se o produto interno entre eles for igual à zero.
Logo, pelo teorema acima, o conjunto é linearmente independente. Neste exemplo, são todos elementos de ; portanto, formam uma base para que é também ortogonal (voltaremos a falar sobre bases ortogonais em breve)
Como e assistindo TV em inglês?
Qual é a importância do controle sanitário para a segurança dos alimentos?
Quando fazemos o teste de Babinski?
Qual é o singular de homem em inglês?
Como pontuar a frase hoje vou dormir cedo?
O que significa a palavra homogeneizado?
O que você tem feito pela sustentabilidade ou para reduzir seus impactos de consumo?
Como podemos proteger o solo usado na produção agrícola da erosão causada pela chuva?
Qual é a relação entre a antropologia e a educação?
Como podemos conhecer a filosofia?
Como podemos proteger as bacias hidrográficas?
Como podemos reconhecer um governo despótico?
Como podemos investigar de onde vem essa água?
Como podemos recuperar o sal da cozinha se ele estiver misturado com areia?